Capture Data at Source

· Most important principle of input design

· Capture data as cloe to original source as possible

· many forms are filled out manually, then later entered into system

· It is expensive to use forms first then enter data later

· Also processing time is increased

· Increases possibility of errors

· Better to design system t have users enter data directly into system

· Source data automation relies upon hardware devices to capture info automatically

· Bar code readers, optical recognition, magnetic stripe readers are examples

· Another option is to have trained operator enter data right at source

Minimal Keystrokes

· Keystrokes cost time and money

· Never ask for information that can be obtained other ways

· lookups

· Dropdown lists

· Default values

Types of Input

· Text - textbox used to enter text

· can be fixed length or scrollable

· permit copy, cut and paste functions from text boxes

· Numbers - number box used to enter numbers

· helpful if system automatically formats numbers

· Neve use a number box if you can use a selection box

· Selection box - enables user to select a value from a predefined list

· arrange items in list in some meaningful order

· alphabetic or most frequently used first

· can use a default value

Output Design

· outputs are the reports that the system creates

· may be on the screen or paper reports

Basic Principles

· Goal is to present information to users so the can accurately understand with least effort

· Understand report usage

· reference or cover-to-cover?

· frequency?

· real-time or batch reports?

· manage information load

· all needed information, no more

· minmize bias

· bias can be introduced by sort method (1st = important?)

· graphic reports can be subject to bias because of scale on axis (scale begins at zero, sampling at same rate)

Summary

· The user interface should be designed to make the user's work easier and more effective

· principles for good interface design include concern for content and context for navigation through activities, aesthetic consideration, and minimizing user effort.

· The design process focuses on user actions, diagramming the structure, setting up standards and a template, then evaluating interface designs

Program Design

Program Design

· create instructions for the programmers

· the top-down, modular approach

· begin with the "big picture" and gradually add detail

· Program design document

· all structure charts and specifications needed by programmers to implement the system

Why Program design?

· packages software and libraries are not enough

· existing code needs to be understood, organized, pieced together (reengineering)

· It's common to write some code for most MIS

· program design is based on previous analysis and design

· It's not the end of the design nor analysis

· It's the time to fine tune or clarify the previous work.

The structure chart

· important program design technique

· Shows all components of code in a hierarchical format

· Sequence

· Selection

· Iteration

· Module: lines of program code that performs a single function

· Control module

· Subordinate module

Structure Chart Example

Figure 12-3 pg 393

Structure Chart Elements

see text.

Building the Structure Chart

· Processes in the DFD tend to represent one module on the structure chart

· Afferent processes - provide inputs to system

· Central processes - perform critical system operations

· Efferent processes - handle system outputs

· The DFD leveling can correspond to the structure chart hierarchy

Types of Structure Charts

· transaction structure

· Transform structure

Transaction structure

· Control module calls subordinate modules, each of which handles a particular transaction

· many afferent processes

· few efferent processes

· higher up levels of structure chart

· using inputs to create a new output

Transform Structure

· Control module calls several subordinate modules in sequence

· Each subordinate performs a step in a process that transforms an input into an output

· few afferent processes

· many efferent processes

· lower levels of structure chart

· coordinates the movement of outputs

Steps in Building the Structure Chart

1. Identify top level modules and decompose them into lower levels (transaction? transform?)

2. Add control connections (loop, condition)

3. Add couples (control, data)

a. Normally, control flags are passed from subordinate models to control models.

4. Review and revise until complete

Design Guidlines

· High quality structure charts result in programs that are modular, reusable and easy to implement.

· Measures include:

· Cohesion

· Coupling

· Appropriate levels of fan-in and fan-out

Types of Cohesion (intra-module)

· Functional: one problem related task

· Sequential: output from one task is used by the next

· Communicational: all tasks use same set of inputs or outputs

· Procedural: tasks have to be performed in sequence

· Temporal: tasks occurs at the same time

· Logical: same groups of tasks, parent decides to perform which one

· Coindidental: I have no idea

first item in cohesion is higher the last will be lower

Types of Coupling (inter-module)

· Data: whole record is passed and used

· Stamp: whole record passed only a field (stamped) is used

· Control: a filed or record is passed for control purpose

· Common: use same global data set (no passing), hard to depict with a structure chart

· Content: module refers to "contents" of another module

data is the best and content is the worst

We are seeking higher cohesion and lower coupling

Can that happen at the same time?

Fan-in: The number of control modules that control a particular module.

Fan-out: The number of modules directly controlled by a particular module

Quality Checklist

1. Library modules have been created where ever possible

2. The diagram has a high fan-in structure

3. Control modules have no more than 7 subordinates

4. Each module performs only one function (high cohesion)

5. Modules sparingly share information (loose coupling)

6. Data couples that are passed are actually used by the accepting module

7. Control modules are passed from "low to high"

8. Each module has a reasonable amount of code associated with it

